Embedding error.
No.115
test
No.116
No.231
\text{Let } R = \{-1, 0, 1\}
\text{Let } F = {0, 1, \cdots , 2n+1}
\text{Let } \star : F \times F \to {-1, 0, 1} \text{ with the properties:}
\forall x \in F, x \star x = 0
\forall x, y \in F, x \star y = -1 \leftrightarrow y \star x = 1
\forall x \in F, \exists G \subseteq F \text{ such that } \mid G \mid = n \text{ and } \forall y \in G, x \star y = 1
No.232
\text{Let } F = {0, 1, \cdots , 2n+1}
\text{Let } \star : F \times F \to \{-1, 0, 1\} \text{ with the properties:}
\forall
\in
\forall x \in F, x \star x = 0
\forall x, y \in F, x \star y = -1 \leftrightarrow y \star x = 1
\forall x \in F, \exists G \subseteq F \text{ such that } \mid G \mid = n \text{ and } \forall y \in G, x \star y = 1
No.233
\exists
No.234
\text{Let } F = \{0, 1, \cdots , 2n+1\}
\text{Let } \star : F \times F \to \{-1, 0, 1\} \text{ with the properties:}
\text{For all } x \in F, x \star x = 0
\text{For all } x, y \in F, x \star y = -1 \leftrightarrow y \star x = 1
\text{For all } x \in F \text{ there exists } G \subseteq F \text{ such that } \mid G \mid = n \text{ and for all } y \in G, x \star y = 1
No.235
\text{Let } F = \{0, 1, \cdots , 2n+1\}
\text{Let } \star : F \times F \to \{-1, 0, 1\} \text{ with the properties:}
\text{For all } x \in F, x \star x = 0
\leftrightarrow
\subseteq
\subset
\text{For all } x, y \in F, x \star y = -1 \leftrightarrow y \star x = 1
\text{For all } x \in F \text{ there exists } G \subseteq F \text{ such that } \mid G \mid = n \text{ and for all } y \in G, x \star y = 1
No.236
\mid
No.237
|
No.238
\int_{1}^{2}x^2 dx
\sum_{1 \leq x < 10}x
\langle \text{Hello} \rangle
\frac{\text{hello}}{\text{faggots}}
No.239
$\forall$
No.240
\text{Let } F = \{0, 1, \cdots , 2n+1\}
\text{Let } \star : F \times F \to \{-1, 0, 1\} \text{ with the properties:}
\text{For all } x \in F, x \star x = 0
\text{For all } x, y \in F, x \star y = -1 \text{ if, and only if, } y \star x = 1
\text{For all } x \in F \text{ there exists } G \text{ a subset of } F \text{ such that } |G| = n \text{ and for all } y \in G, x \star y = 1
No.241
\text{Consider }\odot : F \times F \to \{-1, 0, 1\} \text{ given by:}
\text{For all } x, y \in F[\tex]
[tex]x \odot y = -1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{0, 1, \cdot, n-1\}
x \odot y = 0 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} = n
x \odot y = 1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{n + 1, n + 2, \cdot, 2n\}
No.242
x \odot y = -1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{0, 1, \cdots, n-1\}
No.243
\text{Does there exist }f : \{0, 1, \cdots, 2n\} \times \{0, 1, \cdots, 2n\} \text{ such that:}
\text{For all } x, y \in F, f(x \star y) = f(x) \odot f(y)
No.244
\text{Let } F = \{0, 1, \cdots , 2n\}
\text{Let } \star : F \times F \to \{-1, 0, 1\} \text{ with the properties:}
\text{For all } x \in F, x \star x = 0
\text{For all } x, y \in F, x \star y = -1 \text{ if, and only if, } y \star x = 1
\text{For all } x \in F \text{ there exists } G \text{ a subset of } F \text{ such that } |G| = n \text{ and for all } y \in G, x \star y = 1
\text{Consider }\odot : F \times F \to \{-1, 0, 1\} \text{ given by:}
\text{For all } x, y \in F[\tex]
[tex]x \odot y = 1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{0, 1, \cdots, n-1\}
x \odot y = 0 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} = n
x \odot y = -1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{n + 1, n + 2, \cdots, 2n\}
\text{Does there exist }f : \{0, 1, \cdots, 2n\} \to \{0, 1, \cdots, 2n\} \text{ such that:}
\text{For all } x, y \in F, x \star y = f(x) \odot f(y)
No.245
\text{Let } F = \{0, 1, \cdots , 2n\}
\text{Let } \star : F \times F \to \{-1, 0, 1\} \text{ with the properties:}
\text{For all } x \in F, x \star x = 0
\text{For all } x, y \in F, x \star y = -1 \text{ if, and only if, } y \star x = 1
\text{For all } x \in F \text{ there exists } G \text{ a subset of } F \text{ such that } |G| = n \text{ and for all } y \in G, x \star y = 1
\text{Consider }\odot : F \times F \to \{-1, 0, 1\} \text{ given by:}
\text{For all } x, y \in F [\tex]
[tex]x \odot y = 1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{0, 1, \cdots, n-1\}
x \odot y = 0 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} = n
x \odot y = -1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{n + 1, n + 2, \cdots, 2n\}
\text{Does there exist }f : \{0, 1, \cdots, 2n\} \to \{0, 1, \cdots, 2n\} \text{ such that:}
\text{For all } x, y \in F, x \star y = f(x) \odot f(y)
x \odot y = 1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{0, 1, \cdots, n-1\}
No.246
\text{Let } F = \{0, 1, \cdots , 2n\}
\text{Let } \star : F \times F \to \{-1, 0, 1\} \text{ with the properties:}
\text{For all } x \in F, x \star x = 0
\text{For all } x, y \in F, x \star y = -1 \text{ if, and only if, } y \star x = 1
\text{For all } x \in F \text{ there exists } G \text{ a subset of } F \text{ such that } |G| = n \text{ and for all } y \in G, x \star y = 1
\text{Consider }\odot : F \times F \to \{-1, 0, 1\} \text{ given by:}
\text{For all } x, y \in F [\tex]
[tex]x \odot y = 1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{0, 1, \cdots, n-1\}
x \odot y = 0 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} = n
x \odot y = -1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{n + 1, n + 2, \cdots, 2n\}
\text{Does there exist }f : \{0, 1, \cdots, 2n\} \to \{0, 1, \cdots, 2n\} \text{ such that:}
\text{For all } x, y \in F, x \star y = f(x) \odot f(y)
No.247
\text{Let } F = \{0, 1, \cdots , 2n\}
\text{Let } \star : F \times F \to \{-1, 0, 1\} \text{ with the properties:}
\text{For all } x \in F, x \star x = 0
\text{For all } x, y \in F, x \star y = -1 \text{ if, and only if, } y \star x = 1
\text{For all } x \in F \text{ there exists } G \text{ a subset of } F \text{ such that } |G| = n \text{ and for all } y \in G, x \star y = 1
\text{Consider }\odot : F \times F \to \{-1, 0, 1\} \text{ given by:}
\text{For all } x, y \in F
x \odot y = 1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{0, 1, \cdots, n-1\}
x \odot y = 0 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} = n
x \odot y = -1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{n + 1, n + 2, \cdots, 2n\}
\text{Does there exist }f : \{0, 1, \cdots, 2n\} \to \{0, 1, \cdots, 2n\} \text{ such that:}
\text{For all } x, y \in F, x \star y = f(x) \odot f(y)
No.248
\text{Let } F = \{0, 1, \cdots , 2n\}
\text{Let } \star : F \times F \to \{-1, 0, 1\} \text{ with the properties:}
\text{For all } x \in F, x \star x = 0
\text{For all } x, y \in F, x \star y = -1 \text{ if, and only if, } y \star x = 1
\text{For all } x \in F \text{ there exists } G \text{ a subset of } F \text{ such that } |G| = n \text{ and for all } y \in G, x \star y = 1
\text{Consider }\odot : F \times F \to \{-1, 0, 1\} \text{ given by:}
\text{For all } x, y \in F
x \odot y = 1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{0, 1, \cdots, n-1\}
x \odot y = 0 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} = n
x \odot y = -1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{n + 1, n + 2, \cdots, 2n\}
\text{Does there exist }f : \{0, 1, \cdots, 2n\} \to \{0, 1, \cdots, 2n\} \text{ such that:}
\text{For all } x, y \in F, x \star y = f(x) \odot f(y)
No.249
\KaTeX
\katex
No.252
No.274
123
[code]
int x;
int xx;
int xxx;
[code]
/test
No.283
test ==test== test
No.284
' ' test ' '
No.301
\tiny\color{green}{ayy}
\tiny\color{green}{lmao}
No.302
\huge\color{red}{F} \huge\color{orange}{A} \huge\color{yellow}{G} \huge\color{green}{G} \huge\color{cyan}{O} \huge\color{blue}{T} \huge\color{magenta}{S}
No.303
undertest
No.306
 | Rolled 37 |
roll
No.307
 | Rolled 25 |
dice
No.308
 | Rolled 55 |
test
No.309
 | Rolled 60 |
rolly
No.317
quote test
No.318
No.319
test
No.320
test
No.323
red
text
No.326
Nigger
No.336
test
No.369
test
No.370
No.472
No.680
spoilertestspoiler
No.681
this is a test
No.682
boner robin