[ home / board list / faq / random / create / bans / search / manage / irc ] [ ]

/sandbox/ - Test youre newfaggines here

Pulp_Fiction_1994_BluRay_1080p_DTS_dxva_LoNeWolf.srt

Catalog

8chan Bitcoin address: 1NpQaXqmCBji6gfX8UgaQEmEstvVY7U32C
The next generation of Infinity is here (discussion) (contribute)
A message from @CodeMonkeyZ, 2ch lead developer: "How Hiroyuki Nishimura will sell 4chan data"
Email
Comment *
File
* = required field[▶ Show post options & limits]
Confused? See the FAQ.
Embed
(replaces files and can be used instead)
Options
dicesidesmodifier
Password (For file and post deletion.)

Allowed file types:jpg, jpeg, gif, png, webm, mp4, swf
Max filesize is 8 MB.
Max image dimensions are 10000 x 10000.
You may upload 5 per post.


Embedding error.

 No.115

test

 No.116


 No.231

\text{Let } R = \{-1, 0, 1\}
\text{Let } F = {0, 1, \cdots , 2n+1}
\text{Let } \star : F \times F \to {-1, 0, 1} \text{ with the properties:}
\forall x \in F, x \star x = 0
\forall x, y \in F, x \star y = -1 \leftrightarrow y \star x = 1
\forall x \in F, \exists G \subseteq F \text{ such that } \mid G \mid = n \text{ and } \forall y \in G, x \star y = 1

 No.232

\text{Let } F = {0, 1, \cdots , 2n+1}
\text{Let } \star : F \times F \to \{-1, 0, 1\} \text{ with the properties:}
\forall
\in
\forall x \in F, x \star x = 0
\forall x, y \in F, x \star y = -1 \leftrightarrow y \star x = 1
\forall x \in F, \exists G \subseteq F \text{ such that } \mid G \mid = n \text{ and } \forall y \in G, x \star y = 1

 No.233

\exists

 No.234

\text{Let } F = \{0, 1, \cdots , 2n+1\}
\text{Let } \star : F \times F \to \{-1, 0, 1\} \text{ with the properties:}
\text{For all } x \in F, x \star x = 0
\text{For all } x, y \in F, x \star y = -1 \leftrightarrow y \star x = 1
\text{For all } x \in F \text{ there exists } G \subseteq F \text{ such that } \mid G \mid = n \text{ and for all } y \in G, x \star y = 1

 No.235

\text{Let } F = \{0, 1, \cdots , 2n+1\}
\text{Let } \star : F \times F \to \{-1, 0, 1\} \text{ with the properties:}
\text{For all } x \in F, x \star x = 0
\leftrightarrow
\subseteq
\subset
\text{For all } x, y \in F, x \star y = -1 \leftrightarrow y \star x = 1
\text{For all } x \in F \text{ there exists } G \subseteq F \text{ such that } \mid G \mid = n \text{ and for all } y \in G, x \star y = 1

 No.236

\mid

 No.237

|

 No.238

\int_{1}^{2}x^2 dx
\sum_{1 \leq x < 10}x
\langle \text{Hello} \rangle
\frac{\text{hello}}{\text{faggots}}

 No.239

$\forall$

 No.240

\text{Let } F = \{0, 1, \cdots , 2n+1\}
\text{Let } \star : F \times F \to \{-1, 0, 1\} \text{ with the properties:}
\text{For all } x \in F, x \star x = 0
\text{For all } x, y \in F, x \star y = -1 \text{ if, and only if, } y \star x = 1
\text{For all } x \in F \text{ there exists } G \text{ a subset of } F \text{ such that } |G| = n \text{ and for all } y \in G, x \star y = 1

 No.241

\text{Consider }\odot : F \times F \to \{-1, 0, 1\} \text{ given by:}
\text{For all } x, y \in F[\tex]
[tex]x \odot y = -1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{0, 1, \cdot, n-1\}

x \odot y = 0 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} = n
x \odot y = 1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{n + 1, n + 2, \cdot, 2n\}

 No.242

x \odot y = -1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{0, 1, \cdots, n-1\}

 No.243

\text{Does there exist }f : \{0, 1, \cdots, 2n\} \times \{0, 1, \cdots, 2n\} \text{ such that:}
\text{For all } x, y \in F, f(x \star y) = f(x) \odot f(y)

 No.244

\text{Let } F = \{0, 1, \cdots , 2n\}
\text{Let } \star : F \times F \to \{-1, 0, 1\} \text{ with the properties:}
\text{For all } x \in F, x \star x = 0
\text{For all } x, y \in F, x \star y = -1 \text{ if, and only if, } y \star x = 1
\text{For all } x \in F \text{ there exists } G \text{ a subset of } F \text{ such that } |G| = n \text{ and for all } y \in G, x \star y = 1

\text{Consider }\odot : F \times F \to \{-1, 0, 1\} \text{ given by:}
\text{For all } x, y \in F[\tex]
[tex]x \odot y = 1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{0, 1, \cdots, n-1\}

x \odot y = 0 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} = n
x \odot y = -1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{n + 1, n + 2, \cdots, 2n\}

\text{Does there exist }f : \{0, 1, \cdots, 2n\} \to \{0, 1, \cdots, 2n\} \text{ such that:}
\text{For all } x, y \in F, x \star y = f(x) \odot f(y)

 No.245

\text{Let } F = \{0, 1, \cdots , 2n\}
\text{Let } \star : F \times F \to \{-1, 0, 1\} \text{ with the properties:}
\text{For all } x \in F, x \star x = 0
\text{For all } x, y \in F, x \star y = -1 \text{ if, and only if, } y \star x = 1
\text{For all } x \in F \text{ there exists } G \text{ a subset of } F \text{ such that } |G| = n \text{ and for all } y \in G, x \star y = 1

\text{Consider }\odot : F \times F \to \{-1, 0, 1\} \text{ given by:}
\text{For all } x, y \in F [\tex]
[tex]x \odot y = 1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{0, 1, \cdots, n-1\}

x \odot y = 0 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} = n
x \odot y = -1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{n + 1, n + 2, \cdots, 2n\}

\text{Does there exist }f : \{0, 1, \cdots, 2n\} \to \{0, 1, \cdots, 2n\} \text{ such that:}
\text{For all } x, y \in F, x \star y = f(x) \odot f(y)

x \odot y = 1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{0, 1, \cdots, n-1\}

 No.246

\text{Let } F = \{0, 1, \cdots , 2n\}
\text{Let } \star : F \times F \to \{-1, 0, 1\} \text{ with the properties:}
\text{For all } x \in F, x \star x = 0
\text{For all } x, y \in F, x \star y = -1 \text{ if, and only if, } y \star x = 1
\text{For all } x \in F \text{ there exists } G \text{ a subset of } F \text{ such that } |G| = n \text{ and for all } y \in G, x \star y = 1

\text{Consider }\odot : F \times F \to \{-1, 0, 1\} \text{ given by:}
\text{For all } x, y \in F [\tex]

[tex]x \odot y = 1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{0, 1, \cdots, n-1\}

x \odot y = 0 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} = n
x \odot y = -1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{n + 1, n + 2, \cdots, 2n\}

\text{Does there exist }f : \{0, 1, \cdots, 2n\} \to \{0, 1, \cdots, 2n\} \text{ such that:}
\text{For all } x, y \in F, x \star y = f(x) \odot f(y)

 No.247

\text{Let } F = \{0, 1, \cdots , 2n\}
\text{Let } \star : F \times F \to \{-1, 0, 1\} \text{ with the properties:}
\text{For all } x \in F, x \star x = 0
\text{For all } x, y \in F, x \star y = -1 \text{ if, and only if, } y \star x = 1
\text{For all } x \in F \text{ there exists } G \text{ a subset of } F \text{ such that } |G| = n \text{ and for all } y \in G, x \star y = 1

\text{Consider }\odot : F \times F \to \{-1, 0, 1\} \text{ given by:}
\text{For all } x, y \in F
x \odot y = 1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{0, 1, \cdots, n-1\}
x \odot y = 0 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} = n
x \odot y = -1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{n + 1, n + 2, \cdots, 2n\}

\text{Does there exist }f : \{0, 1, \cdots, 2n\} \to \{0, 1, \cdots, 2n\} \text{ such that:}
\text{For all } x, y \in F, x \star y = f(x) \odot f(y)

 No.248

\text{Let } F = \{0, 1, \cdots , 2n\}
\text{Let } \star : F \times F \to \{-1, 0, 1\} \text{ with the properties:}
\text{For all } x \in F, x \star x = 0
\text{For all } x, y \in F, x \star y = -1 \text{ if, and only if, } y \star x = 1
\text{For all } x \in F \text{ there exists } G \text{ a subset of } F \text{ such that } |G| = n \text{ and for all } y \in G, x \star y = 1

\text{Consider }\odot : F \times F \to \{-1, 0, 1\} \text{ given by:}
\text{For all } x, y \in F
x \odot y = 1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{0, 1, \cdots, n-1\}
x \odot y = 0 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} = n
x \odot y = -1 \text{ if } x - y + n \text{ (mod } 2n + 1 \text{)} \in \{n + 1, n + 2, \cdots, 2n\}

\text{Does there exist }f : \{0, 1, \cdots, 2n\} \to \{0, 1, \cdots, 2n\} \text{ such that:}
\text{For all } x, y \in F, x \star y = f(x) \odot f(y)

 No.249

\KaTeX
\katex

 No.252


 No.274

123
[code]
int x;
int xx;
int xxx;
[code]

/test

 No.283

test ==test== test

 No.284

' ' test ' '

 No.301

\tiny\color{green}{ayy}
\tiny\color{green}{lmao}

 No.302

\huge\color{red}{F} \huge\color{orange}{A} \huge\color{yellow}{G} \huge\color{green}{G} \huge\color{cyan}{O} \huge\color{blue}{T} \huge\color{magenta}{S}

 No.303

undertest

 No.306

Dice rollRolled 37

roll

 No.307

Dice rollRolled 25

dice

 No.308

Dice rollRolled 55

test

 No.309

Dice rollRolled 60

rolly

 No.317

quote test

 No.318


 No.319

test

 No.320

test

 No.323

red
text

 No.326

Nigger

 No.336

test

 No.369

test

 No.370

File: 1414585729958.webm (2.99 MB, 1000x414, 500:207, 1402898287278.webm)


 No.472


 No.680

spoilertestspoiler

 No.681

this is a test

 No.682

boner robin



[Return][Go to top][Catalog][Post a Reply]
Delete Post [ ]
[]
[ home / board list / faq / random / create / bans / search / manage / irc ] [ ]